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ABSTRACT: Understanding human emotions through computational models is vital for applications such as opinion 

mining, recommendation systems, and human-computer interaction. Traditional sentiment analysis relying solely on 

textual data often misses the rich emotional context conveyed through vocal tones and facial expressions. To address 

this, we propose a transformer-based multimodal sentiment analysis (MSA) system that integrates textual, auditory, and 

visual cues for improved sentiment understanding. 

 
Our system is developed using the CMU-MOSEI dataset, which provides over 23,000 annotated video segments with 

aligned text, audio, and visual modalities. Textual inputs are processed using BERT to extract contextual embeddings. 

Audio features like pitch and speech rate are handled by an audio transformer, while facial expressions and gestures are 

captured and encoded using a Vision Transformer (ViT). 

 
The model employs an attention-based intermediate fusion strategy to align and combine modality-specific 

representations, followed by a regression head that predicts sentiment on a continuous scale. Evaluation results show 

strong performance across metrics such as F1-score, MAE, and Pearson correlation, especially in handling nuanced or 

conflicting emotional signals. 

 
This work highlights the importance of multimodal approaches for developing emotionally aware AI and contributes to 

advancing affective computing technologies. 
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I. INTRODUCTION 

 

1.1 Evolution of Sentiment Analysis 

Over the past two decades, sentiment analysis has advanced within AI and natural language processing (NLP). Initially, 

models focused on analyzing text—classifying opinions from reviews, social media, and news into positive, negative, 

or neutral. However, human emotions are complex and often conveyed through subtleties like tone or facial expression. 

Sarcasm or contradictory signals (e.g., a cheerful tone with negative words) challenge unimodal text-based approaches. 

Human communication is inherently multimodal, integrating language, vocal inflection, and visual cues. With the rise 

of video platforms such as YouTube and Zoom, the need for models to interpret sentiment across modalities has grown. 

Multimodal sentiment analysis (MSA) meets this challenge by fusing text, audio, and visual information for more 

nuanced emotional understanding. 

 

1.2 Motivation for Multimodal Sentiment Analysis 

Unimodal text systems face limitations, struggling with ambiguity and lacking context. Audio features (pitch, tone) and 

visual cues (facial gestures) provide complementary signals to enhance interpretation. Combining modalities leads to 

richer, human-like sentiment detection. 

 

1.3 Project Scope 

This project proposes a transformer-based MSA model using the CMU-MOSEI dataset. It processes three data types: 

• Textual: Transcriptions capturing semantic cues. 
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• Acoustic: Features such as pitch, tone, and Mel-Frequency Cepstral Coefficients (MFCCs) encoding vocal 

traits. 

• Visual: Facial expressions and gestures from video frames. 

Each modality is processed via dedicated transformer encoders, whose outputs are fused using early fusion with cross-

attention. This unified representation is input to a regression head predicting sentiment scores on a continuous –3 to +3 

scale, offering greater granularity than discrete classification. 

 

1.4 CMU-MOSEI Dataset 

The CMU-MOSEI dataset contains over 23,000 sentence-level video clips from 1,000+ YouTube videos, annotated 

with text, audio, and video data, along with fine-grained sentiment scores and emotion labels. Its diversity enhances 

model robustness, supporting generalizability in real-world scenarios. 

 

1.5 Transformers in Multimodal Learning 

Transformers, initially popularized in NLP (e.g., BERT, GPT), now extend to vision (ViT) and audio. This project 

applies transformer encoders for each modality: 

 

• Text: Fine-tuned BERT for contextual embeddings. 

• Audio: MFCCs and pitch contours processed by temporal transformers. 

• Visual: Vision Transformers capturing spatial-temporal dynamics. 

 

1.6 Fusion Strategy 

Fusing multimodal data is essential. Strategies include early, intermediate, and late fusion. Here, early fusion with 

cross-attention allows outputs from each encoder to attend to one another, dynamically emphasizing salient features 

and resolving contradictions (e.g., negative text with a positive tone). 

 

1.7 Regression-Based Sentiment Prediction 

Unlike traditional classification systems, this model uses regression to predict continuous sentiment scores (–3 to +3). 

A feedforward neural network regression head outputs the score, trained using mean squared error (MSE) loss. This 

enables the system to capture subtle emotional shifts and mixed sentiments. 

 

1.8 Applications and Impact 

MSA has wide-ranging applications: detecting offensive content or opinion shifts in social media; enhancing customer 

service through analysis of recorded interactions; emotion tracking in healthcare (e.g., telemedicine, therapy); and 

improving human-computer interaction through emotionally aware systems. Transformer-based MSA can lead to AI 

that better understands human emotions, offering natural, empathetic interactions. 

 

1.9 Integration Techniques 

Sophisticated integration methods, such as the Information-Theoretic Hierarchical Perception (ITHP) framework, 

balance input modalities and latent emotional representations. Transformer architectures, with their attention 

mechanisms, excel in aligning data streams and emphasizing emotionally relevant features, uncovering deeper 

emotional patterns across text, speech, and visuals. 

 

II. LITERATURE REVIEW 

 

2.1 Introduction to Multimodal Sentiment Analysis 

Multimodal sentiment analysis (MSA) aims to integrate text, audio, and visual data to more accurately interpret human 

emotion. Unlike traditional sentiment analysis, which focuses solely on textual input, MSA leverages advancements in 

natural language processing (NLP) and computer vision (CV) to capture the complexities of real-world communication 

[1], [2]. The proliferation of digital platforms has amplified the need for systems that can analyze multimodal cues, 

including vocal tone, facial expressions, and gestures. 

 

2.2 Role of Modalities and Fusion Strategies 

Textual data offers explicit sentiment cues but often lacks subtlety, while audio features such as pitch and prosody, 

along with visual data like facial expressions, provide critical context [3,5]. Transformer-based models, including 

BERT and GPT, effectively process text, while convolutional and recurrent networks capture audio and visual patterns. 
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Fusion strategies play a pivotal role in integrating modalities. Early fusion, combined with cross-attention mechanisms, 

enables dynamic alignment of heterogeneous data streams, leading to more robust and accurate sentiment analysis 

compared to late fusion approaches [6], [7]. 

 

2.3 Challenges and Applications 

Key challenges in MSA include synchronizing modalities with differing temporal characteristics and addressing noisy 

or incomplete data. Transformer architectures, with their ability to model long-range dependencies and integrate 

multimodal data, provide resilience against these issues. Practical applications span customer service, entertainment, 

and healthcare, where systems must interpret sentiment from diverse input sources to enhance user experience and 

decision-making processes. 

 

III. PROBLEM STATEMENT ASSESSMENT 

 

3.1 Introduction 

Multimodal sentiment analysis (MSA) integrates text, audio, and visual modalities to enhance sentiment understanding, 

addressing the limitations of text-based approaches in capturing emotional subtleties. Traditional methods often 

overlook contextual cues like tone, facial expressions, and gestures, essential for accurate sentiment prediction. 

 

3.2 Defining the Problem 

The core challenge lies in effectively fusing diverse modalities to form a coherent sentiment representation. Text data 

can be ambiguous; acoustic features like pitch and tone require precise extraction; and visual cues such as facial 

expressions face variability due to lighting, occlusion, and background changes. Traditional unimodal approaches fail 

to capture these complex interdependencies, necessitating integrated fusion techniques such as early fusion with cross-

attention to model relationships between modalities. 

 

3.3 Challenges 

Multimodal data alignment is non-trivial due to differences in temporal structure—sequential words, continuous audio, 

and frame-based visual data. The model must also dynamically weight each modality’s contribution, adapting to 

contexts where one modality may dominate sentiment expression. Cross-attention mechanisms enable such flexible 

fusion by focusing on salient features across modalities. 

 

3.4 Transformer-Based Models 

Transformers, with their self-attention capabilities, excel in modeling intra- and inter-modal relationships. Their 

adaptability to sequential data like text and audio, and capacity to process visual inputs, make them ideal for MSA. 

Transformer-based architectures surpass RNNs and CNNs in performance, offering improved contextual understanding 

and scalability for large datasets. 

 

3.5 CMU-MOSEI Dataset 

The CMU-MOSEI dataset, containing over 23,000 annotated video clips with text, audio, and visual data, supports 

diverse real-world scenarios. However, challenges include data variability, alignment complexities, and feature 

extraction in noisy or occluded conditions. 

 

3.6 Additional Challenges 

Imbalanced data distribution, especially with extreme sentiment labels, can bias predictions. Strategies such as 

resampling and class weighting are critical. Regression-based prediction, used here, captures subtle emotional 

variations on a continuous scale (–3 to +3), offering finer granularity than classification but requiring sophisticated 

fusion and feature learning. 

 

IV. METHODOLOGY 

 

4.1 Overview 

This study proposes a transformer-based multimodal sentiment analysis (MSA) system integrating text, audio, and 

visual modalities to capture the nuanced emotional and contextual signals embedded in human communication. 

Leveraging the CMU-MOSEI dataset—a comprehensive benchmark for multimodal sentiment and emotion research—
the model performs fine-grained sentiment regression, mapping continuous sentiment values from -3 to +3 [23]. This 
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approach surpasses traditional text-only methods by incorporating multimodal cues, essential for real-world 

applications.  

 

4.2 Dataset 

The CMU-MOSEI dataset comprises 23,454 annotated sentence-level video clips from over 1,000 YouTube speakers, 

covering diverse topics and demographics. Each clip includes synchronized streams of text, audio, and visual data, 

annotated with sentiment scores and emotion intensity at the word level [23]. This fine-grained alignment across 

modalities supports robust fusion strategies and ensures precise contextual modeling. 

 

4.3 Preprocessing 

Text data is tokenized and embedded using a pre-trained BERT model, generating 768-dimensional contextual 

embeddings [24]. Audio features, such as MFCCs and prosodic elements, are extracted via COVAREP and aligned 

temporally with textual data using forced alignment [25], [26]. Visual features, including facial action units and gaze, 

are extracted with OpenFace, and frame-level features are synchronized with corresponding words [27], [28]. 

 

4.4 Modality-Specific Transformers 

Dedicated transformer encoders are employed for each modality: BERT for text [24], custom transformers for audio 

and visual streams. Positional encodings and self-attention mechanisms capture sequential dependencies and modality-

specific patterns [29]. 

 

4.5 Multimodal Fusion 

A cross-attention mechanism integrates the three modalities by enabling them to selectively attend to complementary 

cues. This early fusion strategy enhances the model’s ability to resolve ambiguities where textual and non-textual 

signals diverge [30]. 

 

                                              
 

Figure 1. Architecture of Multimodal Transformer 

 

 4.6 Sentiment Regression 

A two-layer regression head predicts continuous sentiment scores, optimized using mean squared error (MSE). 

Evaluation metrics include mean absolute error (MAE), Pearson correlation, and concordance correlation coefficient 

(CCC) [31]. 

 

4.7 Emotion Intensity 

An auxiliary regression head predicts intensity levels for six Ekman emotions, offering deeper interpretability and 

emotional causality mapping. A softmax-normalized attention map highlights contributing features, enhancing 

explainability [32]. 
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V. RESULT AND OBSERVATION 

 

5.1 Introduction 

Multimodal sentiment analysis leverages text, audio, and visual cues to enhance sentiment prediction accuracy. 

Traditional approaches often focus solely on text, overlooking critical non-verbal cues such as tone, facial expressions, 

and body language. This study employs a transformer-based model with cross-attention to effectively integrate these 

modalities, enabling nuanced sentiment understanding within video content. This section presents the experimental 

setup and analysis of the model's performance. 

 

5.2 Experimental Setup 

5.2.1 Dataset 

We utilized the CMU-MOSEI dataset, comprising over 23,500 video clips from 1,000+ speakers, each annotated with 

sentiment scores ranging from -3 (negative) to +3 (positive). The dataset includes transcriptions, audio features (pitch, 

intensity, rhythm), and visual data (facial landmarks, action units), supporting comprehensive multimodal analysis. 

 

5.2.2 Model Architecture 

The model integrates BERT-based text encoders, acoustic feature extraction (e.g., MFCCs), and visual encoders 

capturing facial expressions and gestures. Cross-attention fusion enables the model to focus on key multimodal cues 

and their relationships. The fused embeddings are processed by a regression head, mapping them to continuous 

sentiment scores. 

 

5.2.3 Evaluation Metrics 

Evaluation metrics include Mean Absolute Error (MAE), Pearson Correlation Coefficient (Corr), binary accuracy (Acc-

2), and F1 score, providing a comprehensive assessment of performance. 

 

5.3 Performance Analysis 

The model achieved an MAE of 0.512, Corr of 0.782, Acc-2 of 85.7%, and F1 score of 85.9%, indicating strong 

performance in both regression and classification tasks.Comparisons with state-of-the-art models confirm the 

effectiveness of cross-attention fusion. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Model Performance on CMU-MOSEI Dataset 

Figure 2. Predicted Emotion Intensity Levels 
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 5.4 Ablation Studies 

Experiments isolating each modality reveal that text provides the highest predictive power, with audio and visual data 

offering complementary enhancements. Cross-attention fusion outperformed early and late fusion methods, 

emphasizing its ability to model complex multimodal interactions. 

 

5.5 Visualizations and Error Analysis 

Attention heatmaps illustrate the model’s focus on salient features across modalities. Scatter plots of predicted vs. 

actual scores demonstrate high alignment. Misclassifications often involve sarcastic statements, where conflicting cues 

from text and audio challenge the model. Input quality, including noise in audio and visual data, also affects 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6 Observations 

Our findings confirm that integrating multimodal cues through transformer-based cross-attention substantially enhances 

sentiment prediction accuracy. This approach holds promise for real-world sentiment analysis applications. 

 

 
 

Figure 4. Predicted vs. Actual Sentiment Scores 

 

VI. CONCLUSION 

 

This project presents a robust transformer-based framework for multimodal sentiment analysis using the CMU-MOSEI 

dataset. By integrating text, audio, and visual modalities, it captures a rich representation of human emotions, 

surpassing traditional unimodal models. The system leverages BERT embeddings for text, acoustic features like pitch 

and MFCCs, and visual cues such as facial expressions. Cross-attention fusion enables the model to dynamically attend 

to the most relevant features across modalities, while a regression head maps the fused representations to continuous 

sentiment scores. Evaluation metrics, including Mean Absolute Error, Pearson Correlation Coefficient, binary accuracy, 

and F1 score, confirm the model’s effectiveness and robustness in sentiment prediction. 

 

Figure 3. Cross-Attention Heatmap 
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VII. CONTRIBUTIONS AND FUTURE WORK 

 

This work contributes an innovative multimodal sentiment analysis model employing cross-attention fusion to integrate 

diverse data sources. It highlights the effectiveness of combining textual, acoustic, and visual modalities for fine-

grained sentiment prediction. Future research can explore optimizing the model with advanced attention mechanisms or 

integrating additional modalities like body language or physiological data. Exploring fine-tuning on domain-specific 

datasets and incorporating real-time capabilities could expand the model’s practical applications, including customer 

service, mental health monitoring, and human-computer interaction. This project marks a significant step toward more 

accurate and nuanced sentiment analysis by comprehensively integrating multimodal data. 
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